
nodewatcher Documentation
Release 2.0

wlan slovenija

October 20, 2014

Contents

1 Contents 3
1.1 Installation . 3
1.2 Theming . 10
1.3 Telemetry . 11
1.4 Schema . 14

2 Source Code, Issue Tracker and Mailing List 19

3 Indices and Tables 21

i

ii

nodewatcher Documentation, Release 2.0

nodewatcher is one of the projects of wlan slovenija open wireless network. Its main goal is the development of an
open source network planning, deployment, monitoring and maintanance platform with emphasis on community.

Contents 1

https://wlan-si.net

nodewatcher Documentation, Release 2.0

2 Contents

CHAPTER 1

Contents

1.1 Installation

The procedure of installing your own instance of nodewatcher platform follows.

Note: we are assuming that you are running an UNIX-like operating system.

1.1.1 Warning Regarding Database Backend

nodewatcher assumes working support for transactional savepoints in the database backend. This is only supported
in PostgreSQL version 8.0 or higher and therefore this is the only database that is supported by nodewatcher.

The system will still work with MySQL and SQLite but some features regarding error handling and validation
may cause unexpected results and even data corruption! Do not use them for production deployment. You have
been warned.

1.1.2 Prerequisites

The following (Debian, Ubuntu ...) packages are required:

• python (>= 2.6, >= 3.0 not supported)

• python-django (1.4.x)

• python-rrdtool (with rrdtool >= 1.3.5)

• python-lxml

• python-yaml

• python-memcache

• fping

• graphviz

• memcached

• python-psycopg2

• python-django-picklefield

• python-django-south

• python-pyparsing

3

nodewatcher Documentation, Release 2.0

• python-anyjson

• python-pymongo

• python-geoip

• python-dnspython

• beanstalkd

The following Python modules are required:

• celery (2.5.3)

• django-celery (2.5.5)

• django-registration (newer than revision 6d2e42a13cb6, > 0.7)

• django-phonenumber-field

• python-aprmd5

• pybeanstalk

The following PostgreSQL extension is required:

• ip4r extension

Install them all with a single command:

sudo aptitude install python python-django python-rrdtool \
python-lxml python-yaml python-memcache fping graphviz memcached python-psycopg2 \
python-django-picklefield python-django-south python-pyparsing python-anyjson \
python-pymongo beanstalkd python-geoip python-dnspython

1.1.3 Getting Source

Use default branch which contains stable nodewatcher source from the project repository. Get it using this com-
mand:

hg clone http://dev.wlan-si.net/hg/nodewatcher

1.1.4 Configuration

There are few preconfigured settings files already provided for you to use as a template/base:

• settings.py – default settings file for local development

• settings_wlansi.py – settings file for local development customized for wlan slovenija network

• settings_production.py – settings file for production instance used in wlan slovenija network

They are all in frontend directory. settings_production.py extends settings_wlansi.py, which in
turn extends settings.py. You can start testing nodewatcher immediatelly by using settings.py configuration
file. But if you want to modify settings, the recommended way is to make a similar structure, extending and overriding
provided settings files. In this way you will not have repository conflicts when provided settings files will get updated.
And if you extend then properly, you will get good defaults automatically for new settings.

When starting django, make sure to set the DJANGO_SETTINGS_MODULE environment variable or --settings
command line option so that it points to your settings file. Note that your copy of the settings file will not be updated
by the source-code repository.

4 Chapter 1. Contents

http://pgfoundry.org/projects/ip4r/

nodewatcher Documentation, Release 2.0

The settings.py settings file contains a lot of commented-out or disabled options (and features). This also means
some dependencies are not required when using it. On the other hand settings_production.py uses and
enables everything.

1.1.5 Runing Development/Testing Instance

Once you have all prerequisites and nodewatcher itself, you can run it from its frontend directory:

./manage.py runserver

You can then open it in your browser at http://localhost:8000/.

If you want to see how wlan slovenija instance looks like, run instead:

./manage.py runserver --settings=frontend.settings_wlansi

Setting Up Dummy Data

It is often useful to have some real data in your database for local development or to see how the system works with
filled data. Currently we provide a cleaned-up (no passwords or other private data) dump of our database for such
purposes. The dump is created daily and can be retrieved from our server. As it is made from newest repository
version you should probably always update your local version also to newest version prior using this data (otherwise
incompatibilities in data models can happen).

In the dump archive there are two separate components. One is a data.json file which is a sanitized database dump
of our production setup and the other is the graphs directory that includes some static graphs generated by our setup.

Run in the frontend directory:

./manage.py loadtestdata

This will download dump archive, unpack the graphs directory to the static directory and the data.json to
the frontend directory and prepare and populate database with dump data from data.json file.

1.1.6 Setting Up a Production/Clean Environment

You really must use PostgreSQL (see warnings above) so you have to configure it in Django settings file. You should
also disable all debugging options. You can simply use setting_production.py as a template/base for your
settings file. You will also need to create a file named secrets.py into which you put settings you do not want to
have public (and by mistake pushed to the code repository). Here are some suggestions what you can put there:

• DB_PASSWORD

• SECRET_KEY

• GOOGLE_MAPS_API_KEY

Then for clean/empty environment you prepare database with (in the frontend directory):

./manage.py preparedb

It will also ask for initial administrator user data.

1.1. Installation 5

http://localhost:8000/
http://bindist.wlan-si.net/data/dump.tar.bz2

nodewatcher Documentation, Release 2.0

IP Pools

In the database you have to define your project and IP pools to be able to register nodes. You can add them for example
with following SQL queries:

INSERT INTO nodes_pool
(family, network, cidr, status, description, ip_subnet, default_prefix_len,
min_prefix_len, max_prefix_len)

VALUES(4, ’10.88.0.0’, 18, 0, ’Test Pool’, ’10.88.0.0/18’, 27, 26, 28);

The pool in this example is 10.88.0.0/18 by default prefixes of length /27 are allocated to nodes, but allocation
of sizes /26 through /28 (inclusive) is also allowed.

Values are:

• family – should be 4 as we do not support IPv6 yet

• network – network address of your pool

• cidr – size of your pool (prefix length)

• status – should be 0 when first creating a toplevel pool

• description – nice description of the pool

• ip_subnet – shold be in network/cidr format

• default_prefix_len – default prefix length allocated to nodes

• min_prefix_len – min (numerically) prefix length to allow

• max_prefx_len – max (numerically) prefix length to allow

DNS Zones

In order to setup the DNS zones for the projects you will currently have to manually add the top-level zones into the
database and then configure your DNS resolver. The instructions below apply to bind and you should have some
experience with setting up DNS servers. First you need to create a zone by executing a command like:

INSERT INTO dns_zone
(zone, owner_id, active, primary_ns, resp_person, serial, refresh, retry, expire,
minimum)

VALUES(’xx.wlan’, 1, true, ’ns1.xx.wlan.’, ’dns@wlan-xx.net.’, 1, 10800, 3600,
604800, 38400);

Values are:

• zone – should be the zone’s DNS name

• owner_id – currently unused, should be the administrators uid which is usually 1

• active – set to true for active zones

• primary_ns – DNS name of the primary nameserver

• resp_person – e-mail of DNS admin in hostname notation

• serial – current serial number, should be set to 1 when creating a zone

• refresh, retry, expire, minimum – see DNS documentation

After creating a zone you should also create some basic records in order for the zone to work properly:

6 Chapter 1. Contents

nodewatcher Documentation, Release 2.0

INSERT INTO dns_record
(zone_id, name, ttl, type, data, mx_priority)
VALUES(’xx.wlan’, ’@’, 38400, ’SOA’, ’xx.wlan.’, 0);

INSERT INTO dns_record
(zone_id, name, ttl, type, data, mx_priority)
VALUES(’xx.wlan’, ’@’, 38400, ’NS’, ’ns1.xx.wlan.’, 0);

The top-level zone (in our example it is called wlan) must be configured as a zone in your resolver. An example
configuration follows:

$TTL 38400
wlan. IN SOA a.root-servers.wlan. dns.wlan-xx.net. (

1
10800
3600
604800
38400)

; Root nameservers for this zone
wlan. IN NS a.root-servers.wlan.
a.root-servers IN A 10.x.y.z

; Subdomain delegation
xx IN NS ns1.xx.wlan.
ns1.xx.wlan. IN A 10.x.y.z

; Domain for test DNS checks
dns-test.wlan. 0 IN A 127.0.0.1

Then you have to configure your DNS resolver to fetch some zones dynamically from the nodewatcher database. This
can be done in bind by configuring the DLZ plugin in your named.conf. Sample configuration is as follows:

dlz "wlanXX" {
database "postgres 1
{host=localhost dbname=nodewatcher user=nodewatcher password=YOURDBPASSWORD}
{SELECT zone FROM dns_zone WHERE zone = ’$zone$’ AND active = true}
{SELECT ttl, type, case when type = ’TXT’ then mx_priority || ’ ’ || ’\"’ || data || ’\"’ when type = ’SOA’ then primary_ns || ’ ’ || resp_person || ’ ’ || serial || ’ ’ || refresh || ’ ’ || retry || ’ ’ || expire || ’ ’ || minimum else data end FROM dns_record r, dns_zone z WHERE z.zone = r.zone_id AND zone = ’$zone$’ AND name = ’$record$’}";

};

Note: On some older bind versions keyword parameters to queries should be encased in % and not $ (so you would
use %zone% instead of $zone$).

Projects

INSERT INTO nodes_project
(name, description, pool_id, channel, ssid, ssid_backbone, ssid_mobile,
zone_id, captive_portal, geo_lat, geo_long, geo_zoom)

VALUES(’ArborMesh’, ’Example project on the Moon’, 1, 6,
’open.example.net’, ’open.example.net-backbone’, ’open.example.net-mobile’,
NULL, true, 46.05, 14.5, 13);

Values are:

• name – name of the project, for example, city of the network

• description – nice description of the project

• pool_id – default IP pool

1.1. Installation 7

nodewatcher Documentation, Release 2.0

• channel – default channel used

• ssid – SSID used in this project

• ssid_backbone – SSID used for backbone nodes in this project

• ssid_mobile – SSID used for mobile nodes in this project

• zone_id – DNS zone id (NULL if DNS capabilities of ‘’nodewatcher” are not used)

• captive_portal – should the nodes in this project have captive portals?

• geo_lat – default location of the map when adding a new node (latitude)

• geo_long – default location of the map when adding a new node (longitude)

• geo_zoom – default location of the map when adding a new node (zoom)

And then you have to link pool with the project (of course with proper id values):

INSERT INTO nodes_project_pools(project_id, pool_id) VALUES(1, 1);

Running Web Server

For production deployment read Django documentation on the subject. Django’s development web server is not
suitable for production use.

Running Data Collection Daemon (Monitor)

Django web interface is just an interface to the database. To populate and update it with real data from the network
you have to run also a monitoring daemon.

Run the monitor using command (in monitor directory):

./monitor.py --path=.. --settings=frontend.settings_production

You also need to install olsrd-mod-txtinfo plugin on some node in the network and configure it via OLSR
configuration file (also note the node’s firewall configuration). By default monitor expects OLSR txtinfo plugin on
localhost. This and other options you can configure in Django settings file.

Checking OLSR txtinfo Plugin

You can check that the txtinfo plugin is working by issuing:

telnet 10.x.y.z 2006
Trying 10.x.y.z...
Connected to 10.x.y.z.
Escape character is ’^]’.

Then type GET and press enter. This should output something like:

HTTP/1.0 200 OK
Content-type: text/plain

Table: Links
...lots of data...
Connection closed by foreign host.

This means that the plugin is working properly.

8 Chapter 1. Contents

http://docs.djangoproject.com/en/dev/howto/deployment/

nodewatcher Documentation, Release 2.0

Simulation of Monitor Data

To simulate monitor data you should set MONITOR_ENABLE_SIMULATION to True in your setting file. In this
case the whole network is simulated and no node with OLSR providing the data feed is required. This may not be
suitable for all test scenarios. Simulation data should be provided in simulator/data directory.

The latest simulation data that can be retrieved from this location. Simply unpack it into simulator/data direc-
tory.

Optional Data Archival System

nodewatcher supports an optional data archival system so all graphed data is also stored in a non-RRD database.
We currently use MongoDB for this store due to its schemaless document nature and fast operations. In order
to use this feature, you need to install and configure a MongoDB instance and then configure nodewatcher via
DATA_ARCHIVE_* directives in settings.py. You will also need the pymongo Python driver for MongoDB.

You should familiarize yourself with MongoDB operations, durability limitations and proper deployment modes.
Documentation is accessible via the above link.

On-demand Graph Feneration

All graphs are generated on-demand when requested by the web frontend to reduce I/O load on monitor runs. Because
this requires additional configuration/setup, default configuration has the on-demand graph generation disabled (and
therefore no graphs are displayed). You should configure this after you already have a working monitor setup.

On-demand graph generation requires a working installation of a message broker (for details see Celery documenta-
tion). We use MongoDB for this purpuse in production via the mongodb backend. If you already have a working
MongoDB installation (it is also used for the optional data archive system) you simply need to set BROKER_HOST
and BROKER_PORT to proper values for your MongoDB setup. Check settings_production.py file for an
example.

After you have the broker set-up you also need to run celeryd task dispatcher in the background. You can do this
simply via manage.py as follows:

./manage.py celeryd -l info -c 4 --maxtasksperchild=50

For production systems you will probably create an init script for starting up the dispatcher. Be sure that the
user under which the deamon is executed has privileges to write to GRAPH_DIR. The last thing to do is to set
ENABLE_GRAPH_DISPLAY to True in your settings file.

Firmware Image Generator

After you have configured all of the above components you might also want to enable the firmware image generator
daemon. As the whole process is based on OpenWrt, you first need to build the imagebuilders for our firmware. The
procedure below assumes creation of a new directory, but symlinking or building the imagebuilders on another system
(as this is a very CPU and IO intensive process) is also possible.

Setup the needed directories and compile the imagebuilders using the following commands (if you are doing it re-
motely, you really should run this inside a screen session so that compiling is not interrupted if your session is
disconnected):

mkdir build
cd build
hg clone http://dev.wlan-si.net/hg/old/openwrt-nw openwrt-200901
hg clone http://dev.wlan-si.net/hg/nodewatcher

1.1. Installation 9

http://bindist.wlan-si.net/data/simulator-dataset.tar.bz2
http://mongodb.org
http://celeryq.org/docs/
http://celeryq.org/docs/

nodewatcher Documentation, Release 2.0

cd nodewatcher/generator
./build_all_generators.sh

This will take a long time and will heavily load your CPU and IO. It is only needed to rebuild the imagebuilders
when updating to a new version of the firmware. After the above process is completed without errors you must create
the user with an username as configured with IMAGE_GENERATOR_USER in your setttings file. It should be in the
same-named group. This will be the user the process will run under. You also need to setup a local instance of the
beanstalkd daemon that should run on 127.0.0.1, port 11300 (refer to beanstalkd documentation for details).
After that, you may run the image generator using the following commands:

./gennyd.py --path=.. --settings=frontend.settings_production --destination=/srv/www/packages.foonet.org/images

The destination argument should reflect your IMAGES_BINDIST_URL configuration in your settings file. This
means that it should point to the physical directory that is backed by the URL. The directory must be writable by the
IMAGE_GENERATOR_USER user. After you have configured everything and the generator is running, you should set
IMAGE_GENERATOR_ENABLED to True.

Theming

It is possible to configure distributed nodewatcher theme or even develop your own custom theme, see Theming.

1.2 Theming

It is possible to configure distributed nodewatcher theme or even develop your own custom theme. The theme is
composed of four layers:

• favicon, logo and possible other graphical elements of the network using nodewatcher installation

• icons and other graphical elements to visualize nodewatcher elements (like nodes)

• SCSS files to generate CSS used for layout styling

• Django templates for XHTML layout

1.2.1 Favicon and Logo

Favicon and logo can be changed through settings. There are NETWORK_FAVICON_URL and NETWORK_LOGO_URL
settings to set customized favicon and logo URLs.

1.2.2 Overriding CSS

For small changes you might just want to override CSS in the browser, loading your changes after the provided CSS
files. So no changes to distributed files are needed. You will just need to provide a head.html Django template
file which should then include your own CSS file. This file should be somewhere in Django template search path, but
before the distributed (empty) one.

You should use this approach really just for minor modifications. If you happen to find yourself overriding a lot of CSS
all around then this will probably be unmaintainable in the future when distributed nodewatcher theme will change
and you will have to manually keep up with all the changes. In this it is best to extend distributed nodewatcher theme
through SCSS.

10 Chapter 1. Contents

http://kr.github.com/beanstalkd/

nodewatcher Documentation, Release 2.0

1.2.3 Changing CSS

Color scheme and other styling modifications can be achieved by changing the CSS of the theme. A new CSS style
can be created using basic knowledge of CSS, however it is recommended that you first try to extend and modify an
existing basic theme. Do not modify the actual CSS in this case as it is generated automatically using the Compass
authoring framework. The source SCSS files are located in the static/scss directory. One can check the Compass
documentation for more information about Compass.

Assuming that you have now Compass installed on your system, here are the instructions how to compile the default
nodewatcher theme. Compass files are organized into projects. To compile our project go to static/scss and
type:

compass compile

This will update CSS files in statics/css.

To use development settings (adds line comments with source information) use:

compass compile -e development --force

During the actual development running this command may become annoying so the handy way to compile CSS on the
fly is to run the following command in a separate terminal:

compass watch -e development --force

In this case Compass will pool for changes to the source files and compile them when needed. You can now focus
solely on creating the theme.

It is recommended that you use our SCSS files as a base and extend them through capabilities provided by Compass.
So create your own Compass configuration file and directory with SCSS files alongside the default directory and
add your changes there, using our files as a base.

SCSS Files

The syntax of the SCSS files is very similar to the one of the CSS, however, there are some handy features that make
development easier. Some basic examples can be found here (note that there is also an older syntax called SASS that
should not be confused with SCSS). More examples on mixins provided by Compass can be found on a Compass
website.

1.2.4 Changing Django Templates

More drastic changes in layout can be made by modifying the Django templates. In this case some knowledge of
Django templating system is required. You can then override specific template files from frontend/templates
directory by copying them in some other directory, modifying them and then adding the directory path to the templates
directory list TEMPLATE_DIRS in your settings.py file (before the default templates directory). Templates are
modular so it should be easy to change only parts you need.

Again, be careful not to change templates in a way to be hard to maintain them with future nodewatcher versions. If
you need more modular templates for your needs, feel free to open a ticket with request.

1.3 Telemetry

The telemetry provider component enables any node to report its operational attributes via a simple HTTP-based
hierarchical key-value format. Provider is modular, easily extendable, and is split into multiple OpenWRT packages
as follows:

1.3. Telemetry 11

http://en.wikipedia.org/wiki/Cascading_Style_Sheet
http://compass-style.org/
http://compass-style.org/docs/
http://sass-lang.com/
http://compass-style.org/docs/reference/compass/
http://compass-style.org/docs/reference/compass/

nodewatcher Documentation, Release 2.0

• nodewatcher-core provides the basic framework for developing telemetry modules, it is required by all
other packages.

• nodewatcher-clients provides client-related monitoring (in combination with nodogsplash and
olsr-mod-actions plugin).

• nodewatcher-watchdog is responsible for performing periodic testing of node’s network sanity and for
attempting to recover from weird situations.

• nodewatcher-solar provides power regulator telemetry via the solar package.

• nodewatcher-digitemp provides 1-wire thermometer telemetry via the digitemp package.

1.3.1 Installation

Installing these packages should be just a matter of adding our repository to /etc/opkg.conf:

src/gz wlansi http://bindist.wlan-si.net/profiles/PLATFORM

where PLATFORM is one of the supported platforms (currently atheros, brcm24 and ar71xx). Then installing
packages should be just a matter of an opkg install.

1.3.2 Source Code

The source code for OpenWRT packages providing telemetry are available on GitHub. Feel free to make pull requests
with additional providers you might need, and especially to request improvements to the framework provided in core
package for easier and modular development of such providers.

1.3.3 Telemetry Provider for Servers

Servers often do not run OpenWRT, so a Python-based CGI script is available which provides similar telemetry in a
compatible format.

1.3.4 Structure

Remote invocation scripts are installed into /www/cgi-bin and should be accessible via HTTP URL in the form of
http://x.y.z.w/cgi-bin/nodewatcher (where x.y.z.w is the node’s primary IP address).

Individual telemetry modules are installed into /etc/nodewatcher.d/, there is also an example module available
in our repository (note that this module is not installed).

1.3.5 Format

The format used by our provider is a simple text format. Lines starting with a semicolon (;) are comments and should
be ignored by parsers. Any non-comment line is composed of two parts separated by the first left-wise colon (:). Left
part is denoted as key and the right part as value.

All keys form a hierarchy. Namespace atoms are ASCII strings that match the regular expressions based on their
position in the hierarchy:

• Top-level namespace atoms must match [A-Za-z-]+. In addition, if a top-level namespace atom contains a
capital letter from the range A-Z, the whole atom must be capitalized. Capitalized top-level atoms are reserved
for internal use.

12 Chapter 1. Contents

https://github.com/wlanslovenija/firmware-packages-opkg/tree/master/util
https://github.com/wlanslovenija/serwatcher

nodewatcher Documentation, Release 2.0

• Namespace atoms on lower levels must match [a-z0-9-]+.

Each key may contain multiple namespace atoms separated by dots (.), for example a valid key is
wireless.radios.ath0.bssid. The format of value is currently not defined and should be considered of a
per-key type defined by the module that outputs it. Value must not contain a newline, as newlines separate key-value
pairs.

Currently the only special namespace is META. It contains information about installed modules and their versions. This
information is available in META.modules.*.serial and is of integer type. Dots in module names are replaced
with dashes (-) when they are used as namespace atoms.

In the future this hierarchical namespace will be centrally allocated to individual nodewatcher telemetry providers, but
currently the allocations are ad-hoc and may change.

1.3.6 Example

The following is an example of nodewatcher output from one of the nodes:

;
; nodewatcher monitoring system
;
META.version: 2
META.modules.core-clients.serial: 1
iptables.redirection_problem: 0
net.losses: 0
META.modules.core-general.serial: 1
general.uuid: 7061c9ab-2bcc-442e-b0bc-d9959b519e75
general.version: hg
general.local_time: 43987
general.uptime: 43987.78 41507.07
general.loadavg: 0.25 0.27 0.30 1/39 523
general.memfree: 14056
general.buffers: 1496
general.cached: 5044
META.modules.core-traffic.serial: 1
iface.eth0.down: 0
iface.eth0.up: 0
iface.eth1.down: 0
iface.eth1.up: 0
iface.wlan0.down: 73108492
iface.wlan0.up: 23656806
iface.edge0.down: 0
iface.edge0.up: 1909300
META.modules.core-vpn.serial: 1
net.vpn.upload_limit:
net.vpn.mac:
META.modules.core-wireless.serial: 1
wireless.radios.wlan0.bssid: 02:CA:FF:EE:BA:BE
wireless.radios.wlan0.essid: open.wlan-si.net
wireless.radios.wlan0.frequency: 2.447
wireless.radios.wlan0.mac: 54:E6:FC:F3:7F:54
wireless.radios.wlan0.rts: off
wireless.radios.wlan0.frag: off
wireless.radios.wlan0.bitrate:
wireless.radios.wlan0.signal: 0
wireless.radios.wlan0.noise: 0
wireless.errors: 0
wifi.bssid: 02:CA:FF:EE:BA:BE

1.3. Telemetry 13

nodewatcher Documentation, Release 2.0

wifi.essid: open.wlan-si.net
wifi.frequency: 2.447
wifi.mac: 54:E6:FC:F3:7F:54
wifi.rts: off
wifi.frag: off
wifi.bitrate:
wifi.signal: 0
wifi.noise: 0
wifi.errors: 0

1.4 Schema

Warning: This is an incomplete database schema for nodewatcher. Current schema summary only describes
some monitoring-related data – image generator profiles (configuration) is not documented at this moment.

1.4.1 Node

Each node is represented as an instance of model Node. A node may be in any of multiple states (depending on factors
specified by the monitoring system):

• Invalid – Node is visible in the routing tables, but is not known to nodewatcher (entries with this status are
temporary and are removed as soon as a node is not visible anymore). Any other status means that the node is
known to nodewatcher.

• Up – Node is visible in the routing tables and has replied to at least one ICMP ECHO probe (there were no
duplicate packets received).

• Visible – Node is visibile in the routing tables but has not replied to any ICMP ECHO probes.

• Duped – Node is visible in the routing tables and has replied to at least one ICMP ECHO probe twice with the
same sequence number.

• Down – Node is not visible in the routing tables.

• Pending – Node has not yet been seen in the routing tables since its registration with the nodewatcher.

In the monitoring subsystem, a node is identified by its ROUTER-ID within the mesh. Currently this is the main IPv4
address for the node. Each node also carries a UUID that is used as primary node identifier as it is persistent across
node IP changes.

Schema is as follows:

Field Modifiers Description
uuid primary key unique node identifier (Version 4

UUID as per RFC 4122)
ip unique observed contains the ROUTER-ID for this

node
name unique human readable node name, must be

a valid DNS hostname
owner node maintainer
location human readable node location
project project that this node belongs to

(projects also define IP pools and
DNS zones)

Continued on next page

14 Chapter 1. Contents

nodewatcher Documentation, Release 2.0

Table 1.1 – continued from previous page
Field Modifiers Description
notes maintainer-specific notes
url URL containing further information

about the node (usually pictures of
node’s view)

geo_lat latitude (in decimal degrees)
geo_long longitude (in decimal degrees)
ant_external a boolean flag indicating that an ex-

ternal antenna is being used by the
node

ant_polarization enumeration of following values:
• Unknown – polarization is not

known
• Horizontal – horizontal polar-

ization
• Vertical – vertical polarization
• Circular – circular polarization

ant_type enumeration of following values:
• Unknown – antenna type is not

known
• Omni – an omni-directional an-

tenna
• Sector – a sector antenna
• Directional – a directional an-

tenna

system_node a boolean flag indicating that this
node provides core mesh services
(like root DNS, NTP, etc.)

border_router a boolean flag indicating that this
node is a border router, that is it may
redistribute external routes

node_type enumeration of following values:
Server – this type is usually used for
non wifi nodes Mesh – a standard wifi
mesh router Test – testing node that
is even more experimental than oth-
ers Unknown – nodes with Invalid
state

redundancy_link observed a boolean flag indicating whether this
node has a redundant VPN link to the
mesh

redundancy_req a boolean flag indicating whether the
lack of a redundant VPN link should
trigger a warning message

conflicting_subnets observed a boolean flag indicating whether any
of the node’s subnets are currently in
conflict

warnings observed a boolean flag indicating whether
warning messages are present for this
node

Continued on next page

1.4. Schema 15

nodewatcher Documentation, Release 2.0

Table 1.1 – continued from previous page
Field Modifiers Description
status observed previously mentioned node status
peers observed number of active node peers accord-

ing to mesh topology
peer_list observed many to many relation of peer links
last_seen observed timestamp when node was last seen
first_seen observed timestamp when node was first seen
wifi_mac observed wifi interface MAC address
vpn_mac observed VPN interface MAC address (ob-

served)
vpn_mac_conf VPN interface MAC address (config-

ured)
channel observed currently used wifi channel
rtt_min observed RTT measurement
rtt_avg observed RTT measurement
rtt_max observed RTT measurement
pkt_loss observed packet loss
firmware_version observed firmware version used on the node
bssid observed node’s BSSID
essid observed node’s ESSID
local_time observed local node’s time
clients observed number of clients connected via

nodogsplash
clients_so_far observed cumulative number of clients so far
uptime observed current node’s system uptime (not

network connectivity) in seconds

Modifier description:

• primary key – this field is a primary identifier for the given node

• unique – this field must be unique among all nodes

• observed – this field is updated by the monitoring system

1.4.2 Link

Links represent topological connections between nodes as reported by the routing daemon. Each link has the following
schema:

Field Modi-
fiers

Description

src ob-
served

source node

dst ob-
served

destination node

lq ob-
served

link quality

ilq ob-
served

inverse link quality

etx ob-
served

routing metric (these fields are currently as reported by OLSR routing daemon and are
probably routing-protocol specific)

All links are of temporary nature and are kept in sync with routing topology updates.

16 Chapter 1. Contents

nodewatcher Documentation, Release 2.0

1.4.3 Subnet

Each announced and/or registered IP subnet is represented in the database schema by the Subnet model. A subnet may
be in any of multiple states (depending on factors specified by the monitoring system):

• AnnouncedOk – subnet is known to nodewatcher and is allocated to the node that is currently announcing it.

• NotAnnounced – subnet is known to nodewatcher, allocated to a specific node but the node that the subnet is
allocated to is not announcing it at the moment.

• NotAllocated – subnet is not known to nodewatcher, but a node is announcing it anyway.

• Subset – subnet is a more specific announce of a node’s subnet that has status AnnouncedOk (subnet entries
with this status are only temporary - they are present as long as they are seen in the routing tables and are treated
the same as AnnouncedOk).

• Hijacked – subnet is known to nodewatcher but is being announced by some node other than that to which the
subnet has been allocated.

Subnet schema is as follows:

Field Modi-
fiers

Description

node observed node the subnet belongs to
subnet observed textual representation of the subnet
cidr observed subnet prefix length
descrip-
tion

description which may be specified by the user

allocated a boolean flag specifying whether this has been allocated via nodewatcher databse
allo-
cated_at

allocation timestamp

status observed previously mentioned subnet state
last_seen observed timestamp when subnet was last seen
ip_subnet ip field bitwise representation of the subnet for r-tree optimized subnet queries (used for

conflict detection)

Modifier description:

• ip field – this field is a special r-tree indexed field implemented by the IP4R PostgreSQL extension

1.4. Schema 17

http://pgfoundry.org/projects/ip4r/

nodewatcher Documentation, Release 2.0

18 Chapter 1. Contents

CHAPTER 2

Source Code, Issue Tracker and Mailing List

For development wlan slovenija open wireless network development Trac is used, so you can see existing open tickets
or open a new one there. Source code is available on GitHub. If you have any questions or if you want to discuss the
project, use nodewatcher mailing list.

19

https://dev.wlan-si.net/wiki/Nodewatcher
https://dev.wlan-si.net/report/14
https://dev.wlan-si.net/newticket
https://github.com/wlanslovenija/nodewatcher
https://wlan-si.net/lists/info/nodewatcher

nodewatcher Documentation, Release 2.0

20 Chapter 2. Source Code, Issue Tracker and Mailing List

CHAPTER 3

Indices and Tables

• genindex

• search

21

	Contents
	Installation
	Theming
	Telemetry
	Schema

	Source Code, Issue Tracker and Mailing List
	Indices and Tables

